CS 102

 BST Traversal Notes

Given the BST below, we will execute three traversals
INORDER, PREORDER, and POSTORDER

Each traversal is typically implemented as a recursive algorithm. To each we send the root pointer. I use BSTNodePTR as the type for the pointer. The function VISIT represents anything we want to do with the data of the node. This can include printing its value, summing it, printing its depth, etc … The pseudocode follows below.

INORDER (BSTNodePTR pointer)

if pointer != NULL

INORDER(LChild(pointer))

VISIT (pointer)

INORDER(Rchild(pointer))

resulting visit order

(
 5 – 7 - 8 - 10 - 12 - 15 - 16 - 18

CS 102

 BST Traversal Notes

PREORDER (BSTNodePTR pointer)

if pointer != NULL

VISIT (pointer)

PREORDER(LChild(pointer))

PREORDER(Rchild(pointer))

resulting visit order

(
 10 – 8 - 5 - 7 - 16 - 12 - 15 - 18

POSTRDER (BSTNodePTR pointer)

if pointer != NULL

POSTORDER(LChild(pointer))

POSTORDER(Rchild(pointer))

VISIT (pointer)

resulting visit order

(
 7 – 5 - 8 - 15 - 12 - 18 - 16 - 10

CS 102

 BST Traversal Notes

Suppose you wanted to print the depth of a node during a visit. Of course, the node does not have a depth value. So you have to send to the traversal that information. Then the preorder traversal can be modified as follows:

PREORDER (BSTNodePTR pointer, int depth)

if pointer != NULL

VISIT (pointer, depth)

PREORDER(LChild(pointer), depth + 1)

PREORDER(Rchild(pointer), depth + 1)

The initial call would be

PREORDER (root, 0)

The value 0 specifies that the root is at node depth 0.

resulting output could be

· 10 (0) – 8 (1) - 5 (2) - 7 (3) - 16 (1) - 12 (2) - 15 (3) - 18 (2)

 7

5

15

18

12

 8

16

10

